МОСКВА, 21 июн – РИА Новости. В Институте интеллектуальных кибернетических систем Национального исследовательского ядерного университета "МИФИ" предложили новый метод для обучения ограниченной машины Больцмана (вид нейросети), позволяющий оптимизировать процессы семантического кодирования, визуализации и распознавания данных. Результаты исследования опубликованы в журнале "Optical Memoryand Neural Networks".
В настоящее время большую популярность приобретает изучение глубоких нейронных сетей различной архитектуры: сверточных, рекуррентных, автоэнкодерных. Ряд высокотехнологичных компаний, среди которых – Microsoft и Google, используют глубокие нейронные сети для проектирования различных интеллектуальных систем. Вместе с глубокими нейронными сетями приобрел популярность термин "глубокое" обучение.
"Способность искусственных нейронных сетей обучаться является наиболее интригующим их свойством. Подобно биологическим системам, нейронные сети сами моделируют себя, стремясь достичь лучшей модели поведения", — отметил профессор Института кибернетических систем НИЯУ МИФИ Владимир Головко.
Профессор Института кибернетических систем НИЯУ МИФИ Владимир Головко проанализировал проблематику и основные парадигмы глубокого машинного обучения, предложив новый метод для обучения ограниченной машины Больцмана. Ученый показал, что классическое правило обучения этой нейросети является частным случаем предложенного им метода.
"Американские ученые Минский и Пейперт в свое время выявили, что однослойный персептрон с пороговой функцией активации формирует линейную разделяющую поверхность с точки зрения классификации образов и поэтому не может решить задачу "исключающее или". Это провоцировало пессимистические выводы насчет дальнейшего развития нейронных сетей. Однако последнее утверждение справедливо только для однослойного персептрона с пороговой или монотонной непрерывной функцией активации – например, сигмоидной. При использовании сигнальной функции активации однослойный персептрон может решить задачу "исключающее или", так как он разбивает входное пространство образов на классы при помощи двух прямых", – рассказал Владимир Головко.
Практическую ценность данных научных разработок сложно переоценить: они уже нашли применение в таких областях, как компьютерное зрение, распознавание речи и биоинформатика.